Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees

نویسندگان

  • Benedicte Haas
  • Grégory Miermont
  • Bénédicte Haas
چکیده

We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers, that determine how the size of a tree is distributed in its different subtrees. Under some natural assumption on these distributions, stipulating that “macroscopic” splitting events are rare, we show that Markov branching trees admit the so-called self-similar fragmentation trees as scaling limits in the Gromov-Hausdorff-Prokhorov topology. Applications include scaling limits of consistent Markov branching model, and convergence of Galton-Watson trees towards the Brownian and stable continuum random trees. We also obtain that random uniform unordered trees have the Brownian tree as a scaling limit, hence extending a result by Marckert-Miermont and fully proving a conjecture made by Aldous.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling limits of Markov branching trees

We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers, that determine how the size of a ...

متن کامل

Invited Talks

Bénédicte Haas, University of Paris-Dauphine, France Limits of Non-increasing Markov Chains and Applications to Random Trees and Coalescents Consider a non-increasing Markov chain with values in the set of non-negative integers, starting from a large integer !. We describe its scaling limit as ! → ∞, under the assumption that the large jump events are rare and happen at rates that behave like a...

متن کامل

Scaling limits of large random trees

The goal of these lectures is to survey some of the recent progress on the description of largescale structure of random trees. We will use the framework of Markov branching sequences of trees and develop several applications, to combinatorial trees, Galton-Watson trees, some dynamical models of randomly growing trees, cut trees, etc. This is a rough draft – to be completed – all comments are w...

متن کامل

The CRT is the scaling limit of unordered binary trees

The Brownian Continuum Random Tree (CRT), introduced by Aldous [2], is a natural object that arises in various situations in Probability Theory. It is known to be the universal scaling limit for conditioned critical Galton-Watson trees with finite variance offspring distribution [4, 21, 12], or of random labeled trees on n vertices (Cayley trees) [2, 10, 1]. Several distinct proofs for the conv...

متن کامل

J an 2 00 5 PROBABILISTIC AND FRACTAL ASPECTS OF LEVY TREES

We investigate the random continuous trees called Lévy trees, which are obtained as scaling limits of discrete Galton-Watson trees. We give a mathematically precise definition of these random trees as random variables taking values in the set of equivalence classes of compact rooted R-trees, which is equipped with the Gromov-Hausdorff distance. To construct Lévy trees, we make use of the coding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017